Surname:	First Name:

Current School:

SHREWSBURY SCHOOL

SIXTH FORM ENTRANCE EXAMINATION 2023 ENTRY

CHEMISTRY

(1 Hour)

Instructions to candidates:

Answer **ALL THIRTY** questions from **SECTION A** on the grid provided and Answer **TWO** of the **THREE** questions from **SECTION B** in the spaces provided

Section A is worth **30 marks** and **Section B 20 marks**. 50 marks in total.

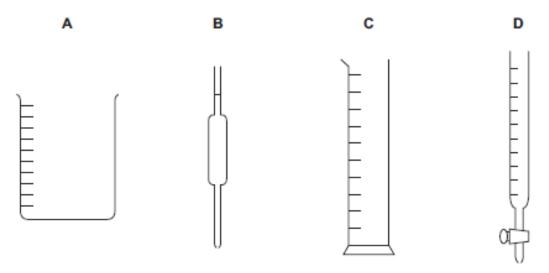
You may use a calculator.
You are provided with a **copy of the Periodic table**

The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 40 Ar Argan	Krypton 36 131 Xe Xenon 54	Rn Radon 86	Lutetium Lutetium 71 Lawrendum	103
	VII		19 Fluorine 9 35.5 C1 Chlorine	Br Bromine 35 127 I I odine	At Astaine 85	Yb Ytterbium 70 No	102
	N		16 Oxygen 8 32 S Sulphur 16		Po Polonium 84	Tm Thuilium 69 Md Mendele vium	101
	^		Nitrogen 7 31 Phosphorus	As Arsenic 33 122 Sb Antimony 51	209 Bismuth 83	Etium 68 Fm Femium	100
	N		Carbon 6 Carbon 8 Si Silcon 14	73 Ge Germanium 32 119 Sn Tn	207 Pb Lead 82	Ho Holmium 67 Es Einsteinium	- 1
	Ш		11 B Boron 5 27 A1 Auminium 13		204 T t Thallium 81	162 Dy Dysprosium 66 Cf Californium	
				65 Zn Zinc 30 112 Cd Cadmium 48	Hg Mercury 80	Tb Tb erbium Bk	97
				Cu Copper 29 Ag Silver	197 Au Gold	Gd Gadolinium 64	96
Group				Nickel 28 106 Pd Pd Palledium 46	Pt Platinum 78	Europium 63 Am Americium	92
Gre				CODAIL CODAIL TO THE PROGRAM AS	192 Ir Indium 77	Sm marium Pu utonium	94
		1 H Hydrogen		56	0 OS Osmium 76	Pm Promethium 61 Np Neptunium	93
				Man Manganese 25 TC Technefium	Rhenium	144 Nd sodymium 238 U	92
				Chromium 24 Mo Moybdenum 42	184 W Tungsten 74	Praseodymium 59	91
				V Vanadium 23 93 Nb Niobium	Ta Tantalum 73	140 Ce Cerium 58 232 Th	06
				48 Tis nium 22 91 Stransium 24	Hff Hafnium	nic mass bol nic) number	101
				Scandium 21 89 Y Yttrium 39	La Lanthanum 57 * AC Actinium	jid series series a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		Be Beryllium 4 24 Magnesium 12	Calcium 20 88 Sr Strontium 38	137 Ba Barium 56 226 Ra Radium	*58-71 Lanthanoid series 90-103 Actinoid series a	,
	_		7 Lithium 3 23 Na 80 dium 11	39 K Potassium 19 85 R R R R R R R 37	CS Cae sium 55 FF	*58-71 L 90-103 /	<u>.</u>

SECTION A

questions – circle the correct letter for each question


Answer all questions – circle the correct letter for each question below.

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В		D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D
11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D
21	Α	В	С	D
22	Α	В	С	D
23 24	Α	В	C C	D
24	Α	В		D
25	Α	В	С	D
26	Α	В	С	D
27	Α	В	С	D
28	Α	В	С	D
29	Α	В	С	D
30	Α	В	С	D

Answer ALL questions from SECTION A on the grid provided.

Question 1

Which diagram shows a burette?

Question 2

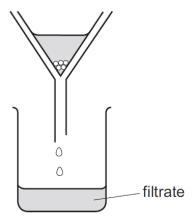
Decane has a freezing point of -30 °C and a boiling point of 174 °C.

A small sample of decane is placed in an open beaker in an oven at a temperature of 120 °C and at atmospheric pressure for 24 hours.

What happens to the sample of decane?

- A It boils.
- B It evaporates.
- C It melts.
- D It sublimes.

Question 3


A student put exactly 25.00 cm³ of dilute hydrochloric acid into a conical flask.

The student added 2.5 g of solid sodium carbonate and measured the change in temperature of the mixture.

Which apparatus does the student need to use?

- A balance, measuring cylinder, thermometer
- **B** balance, pipette, stopwatch
- **C** balance, pipette, thermometer
- **D** burette, pipette, thermometer

A student separates sugar from pieces of broken glass by dissolving the sugar in water and filtering off the broken glass.

What is the filtrate?

- A broken glass only
- **B** broken glass and sugar solution
- **C** pure water
- **D** sugar solution

Question 5

Two isotopes of carbon are ¹²C and ¹⁴C.

Which statement about these two isotopes is correct?

- A Their electronic structure is different.
- **B** They have different numbers of nucleons.
- **C** They have different numbers of protons.
- **D** They have the same number of neutrons.

Question 6

The element livermorium, Lv, was discovered in the year 2000.

Which statement predicts what will happen to an Lv atom when it forms an Lv2- ion?

- A The atom will gain two electrons.
- **B** The atom will lose two electrons.
- **C** The atom will lose two protons.
- **D** The atom will gain two protons.

\			alt = 4 = t =	4	
vvnicn	substance	us a	diatomic	covalent	compound?

A Cl₂

B HC1

C H₂O

D MgO

Question 8

The formula of sodium chlorate(V) is NaC lO_3 .

What is the relative formula mass of sodium chlorate(V), NaClO₃?

A 52.0

B 74.5

C 106.5

D 223.5

Question 9

The temperature decreases when aqueous ethanoic acid reacts with solid sodium carbonate to form a salt.

Which type of reaction and energy change occur?

	type of reaction	energy change
Α	neutralisation	endothermic
В	neutralisation	exothermic
С	redox	endothermic
D	redox	exothermic

Question 10

Which gas is used as a fuel?

A helium

B hydrogen

C nitrogen

D oxygen

Question 11

Element X has a high density, a high melting point and a high electrical conductivity.

It forms many coloured compounds.

Element X and many of its compounds act as catalysts.

What could be the atomic number of X?

A 19

B 26

C 33

D 35

The noble gases are in Group VIII of the Periodic Table.

Which statement explains why noble gases are unreactive?

- A They all have eight electrons in their outer shells.
- B They all have full outer shells.
- C They are all gases.
- **D** They are all monoatomic.

Question 13

What are the products of the reaction between sodium and water?

- A hydrogen and sodium hydroxide
- **B** hydrogen and sodium oxide
- **C** oxygen and sodium hydroxide
- D oxygen and sodium oxide

Question 14

Which row describes what happens to the particles in solid iodine when it is heated and turned into a gas?

	separation of particles	speed of particles
Α	closer together	faster
В	closer together	slower
С	further apart	faster
D	further apart	slower

Question 15

How many protons, neutrons and electrons are there in one atom of the isotope ${}^{27}_{13}$ Al?

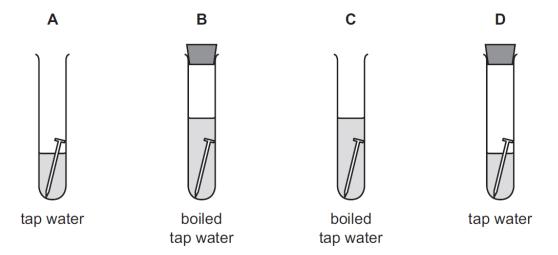
	protons	neutrons	electrons
Α	13	13	13
В	13	14	13
С	14	13	13
D	14	14	13

Which row shows the properties for an ionic compound?

	volatility	electrical conductivity when solid
Α	high	good
В	high	poor
С	low	good
D	low	poor

Question 17

In the preparation of zinc sulfate crystals, excess zinc oxide is added to dilute sulfuric acid.


Why is an excess of zinc oxide added?

- A to make sure crystals are formed and not powder
- B to avoid filtering the mixture
- C to use up all of the sulfuric acid
- D to use up all of the zinc oxide

Question 18

Four different test-tubes containing water and an iron nail are left for two weeks.

Which nail showed the least amount of rusting?

A chemical equation for the complete combustion of methane is shown.

$$2CH_4 + zO_2 \rightarrow 2CO_2 + 4H_2O$$

What is the value of *z*?

- **A** 2
- **B** 3
- **C** 4
- **D** 6

Question 20

The formula of an aluminium ion is Al^{3+} .

What is the formula of aluminium sulfate?

- $A Al_2SO_4$
- **B** $Al(SO_4)_2$ **C** $Al_2(SO_4)_3$ **D** $Al_3(SO_4)_2$

Question 21

Which statement about carbon is correct?

- Α Diamond and graphite both have simple molecular structures.
- Diamond and graphite are both used to make cutting tools. В
- C Each carbon atom in diamond is bonded to three other carbon atoms.
- Graphite conducts electricity and has a giant covalent structure.

Question 22

Which statements about the effect of increasing the temperature on the rate of a reaction are correct?

- 1 It increases the rate of a reaction.
- It increases the activation energy.
- It increases the frequency of collisions.
- **A** 1, 2 and 3
- **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

Chlorine reacts with ethane to produce chloroethane and hydrogen chloride.

The reaction is exothermic.

The bond energies are shown in the table.

bond	bond energy in kJ/mol
C-C1	+340
C-C	+350
C-H	+410
Cl-Cl	+240
H-C1	+430

What is the energy change for the reaction?

A -1420 kJ/mol

B -120 kJ/mol

C +120 kJ/mol

D +1420 kJ/mol

Question 24

Which row describes the properties of an acid?

	property 1	property 2
Α	proton acceptor	pH less than 7
В	proton acceptor	pH more than 7
С	proton donor	pH less than 7
D	proton donor	pH more than 7

A period of the Periodic Table is shown.

group	I	П	III	IV	٧	VI	VII	VIII
element	R	S	Т	٧	W	X	Y	Z

The letters are not their chemical symbols.

Which statement is correct?

- A Element R does not conduct electricity.
- **B** Elements R and Y react together to form an ionic compound.
- C Element Z exists as a diatomic molecule.
- **D** Element Z reacts with element T.

Question 26

All metal nitrates are soluble in water.

All metal chlorides are soluble except silver and lead.

All metal carbonates are insoluble except sodium and potassium.

Which aqueous solutions produce a precipitate when mixed together?

- 1 silver nitrate + sodium carbonate
- 2 silver nitrate + sodium chloride
- 3 barium nitrate + potassium chloride
- **A** 1 and 2 only **B** 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3

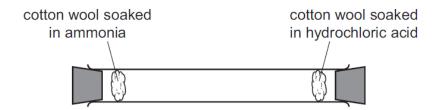
Question 27

Which process does not produce a greenhouse gas?

- A acid rain on limestone buildings
- **B** combustion of wood
- C digestion in cows
- D zinc reacting with sulfuric acid

Fuel X produces carbon dioxide and water when it is burned in air. So does fuel Y.

What could X and Y be?


	Х	Y
Α	С	H ₂
В	С	C ₈ H ₁₈
С	CH ₄	H ₂
D	CH₄	C ₈ H ₁₈

Question 29

Which statement is correct for all metals?

- A They conduct electricity when molten.
- B They gain electrons when they form ions.
- C They have a low density.
- **D** They have a low melting point.

An experiment is set up as shown.

After several minutes, a white ring of ammonium chloride appears as shown.

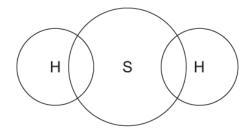
Which statement explains the observation after several minutes?

- A Ammonia gas diffuses faster than hydrogen chloride gas because its molecules have a lower molecular mass.
- **B** Ammonia gas diffuses faster than hydrogen chloride gas because its molecules have a higher molecular mass.
- C Ammonia gas diffuses slower than hydrogen chloride gas because its molecules have a lower molecular mass.
- **D** Ammonia gas diffuses slower than hydrogen chloride gas because its molecules have a higher molecular mass.

END OF SECTION A

Section B [Answer <u>TWO</u> of the THREE questions]

Question 1

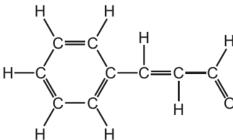

(a) Atoms are made of protons, neutrons and electrons. Atoms of the same element are known as isotopes.

Complete the table.

particle	relative charge	relative mass
electron		1 1840
neutron		
proton	+1	

[2]

- **(b)** Hydrogen sulfide has the formula H₂S.
 - (i) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of hydrogen sulfide. Show outer shell electrons only.


[2]

(ii) Balance the chemical equation for the reaction of hydrogen sulfide with sulfur dioxide shown.

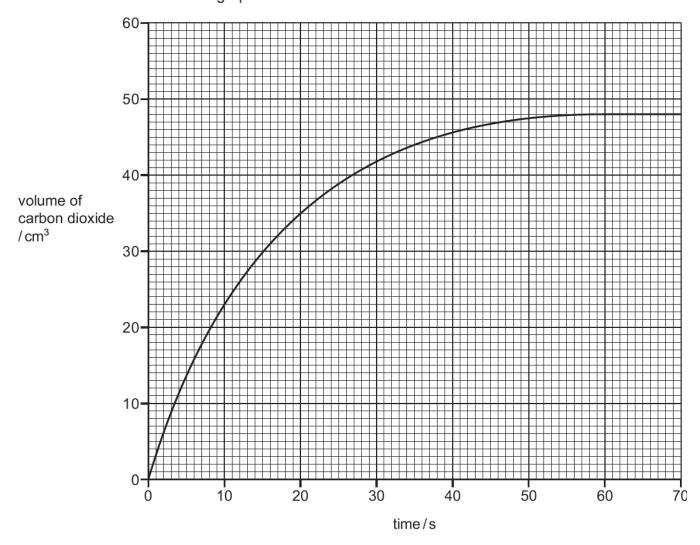
....
$$H_2S + SO_2 \rightarrowS +H_2O$$
 [1]

(c) Toothpaste also contains cinnamal. The structure of cinnamal is shown.

one molecule of water.

	Deduce the formula of cinnamal to show the number of atoms of carbon, hydrogen and oxygen	en
		[1
(d)	Ester Y has the following composition by mass:	
	C, 48.65%; H, 8.11%; O, 43.24%.	
	Calculate the empirical formula of ester Y .	
	empirical formula =	[2]
(e)	Ammonia and hydrazine are weak bases.	
	The chemical equation for the reaction between one molecule of ammonia and one molecule of water is shown.	ıle
	$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	
	(i) State the meaning of the term base.	
		[1 ⁻

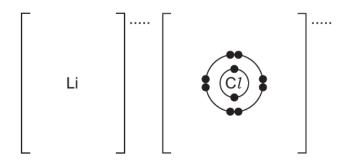
[Total: 10]


(ii) Write a chemical equation for the reaction between one molecule of hydrazine, N₂H₄, and

A student investigates the reaction of small pieces of calcium carbonate with dilute hydrochloric acid. The hydrochloric acid is in excess.

$${\rm CaCO_3} \ + \ 2{\rm HC}l \ \rightarrow \ {\rm CaC}l_2 \ + \ {\rm CO_2} \ + \ {\rm H_2O}$$

The rate of reaction is found by measuring the volume of carbon dioxide gas produced as time increases.


The results are shown on the graph.

(a)	Deduce the volume of carbon dioxide gas at 55s.
	volume = cm ³ [1]
(b)	The experiment is repeated at a higher temperature.
	All other conditions stay the same.
	Draw a line on the grid to show how the volume of carbon dioxide gas produced changes as time increases.
(c)	Describe the effect each of the following has on the rate of reaction of calcium carbonate with dilute hydrochloric acid.
	All other conditions stay the same.
	The reaction is carried out using a higher concentration of hydrochloric acid.
	The reaction is carried out using powdered calcium carbonate.
	[1]
(d)	When 0.11 g of calcium carbonate is used, 25 cm ³ of carbon dioxide gas is produced.
	Calculate the mass of calcium carbonate needed to produce 100 cm ³ of carbon dioxide gas.
	mass of calcium carbonate = g [1

(e) Lithium chloride, LiCl, is an ionic compound.

Complete the dot-and-cross diagram to show the electron arrangement and charges of the ions in lithium chloride.

[2]

(т)	Explain, in terms of attractive forces between particles, why LiC l is a solid at room temperature but NC l_3 is a liquid with a relatively low boiling point.
	[3]

[Total: 10]

a) A student determines the concentration of a solution of dilute sulfuric acid, H ₂ SO ₄ , I with aqueous sodium hydroxide, NaOH.		
step 1	25.0 cm³ of 0.200 mol/dm³ NaOH is transferred into a conical flask.	
step 2	Three drops of methyl orange indicator are added to the conical flask.	
step 3	A burette is filled with H ₂ SO ₄ .	
step 4	The acid in the burette is added to the conical flask until the indicator changes colour. The volume of acid is recorded. This process is known as titration.	
step 5	The titration is repeated several times until a suitable number of results is obtained.	
	the piece of apparatus used to measure exactly 25.0 cm³ of 0.200 mol/dm³ NaOH 1 .	
	[1]	
State t	the colour change of the methyl orange indicator in step 4 .	
from	to	
20.0 c	m³ of H ₂ SO ₄ reacts with 25.0 cm³ of 0.200 mol/dm³ NaOH.	
The e	quation for the reaction is shown.	
	$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$	
Calcu	ate the concentration of H ₂ SO ₄ using the following steps.	
• C	alculate the number of moles in 25.0 cm ³ of 0.200 mol/dm ³ NaOH.	
	mol	
• D	etermine the number of moles of H ₂ SO ₄ that react with the NaOH.	
	mol	
• C	alculate the concentration of H ₂ SO ₄ .	
	mol/dm³	
	step 1 step 2 step 3 step 4 step 5 Name in step State to from 20.0 col The ed Calcul Calcul Calcul D	

(b)	The	diagram	shows	some	coffee	beans
-----	-----	---------	-------	------	--------	-------

Caffeine occurs naturally in coffee beans. Caffeine is a white crystalline solid. It is very soluble in hot water but much less soluble in cold water.

Plan an investigation to obtain a pure crystalline sample of caffeine from coffee beans.

Assume that all other soluble substances in coffee beans are very soluble in both hot and cold water.

You are provided with coffee beans and common laboratory apparatus.
[5]

[Total: 10]